Answer:
3222212.11113
Explanation:
First, you should take care of the fractional separator (the dot) so we split the problem in two parts: one for the integer and other for the fractional part.
Since 4 is a power of 2, we can just take two digits from the orignal number and asign it to its corresponding number in base 4:
![\left[\begin{array}{cc}Binary&Base 4\\00&0\\01&1\\10&2\\11&3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/pde8kqrac0px6rb9jqx3p0aztk0q6sep42.png)
Start with the fractional part from the fractional point to the right:
![\left[\begin{array}{ccccc}01&01&01&01&11\\1&1&1&1&3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/t7p6420bszggguvijfyizqe8hu9y6ohms7.png)
Then do the same to the integer part starting from the fractional point to the left.
![\left[\begin{array}{ccccccc}11&10&10&10&10&01&10\\3&2&2&2&2&1&2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/83lxtcwdbthp7jr7ctc2qt5jwjyvplbjud.png)
By joining them together, we obtain the response.