Answer:
![(√(3) + \frac{1}{\sqrt[4]{6}})^(15)](https://img.qammunity.org/2020/formulas/mathematics/college/ld5bg6ytq387ixyqsrm73ydote22lm0gw3.png)
Binomial expansion formula,

Where,

![\implies (√(3) + (1)/(2))^(15)=\sum_(r=0)^(15) ^(15)C_r (√(3))^(15-r) (\frac{1}{\sqrt[4]{6}})^r](https://img.qammunity.org/2020/formulas/mathematics/college/d8wxw3817r2vm00nof0mglriz5l1y4e5o7.png)
![=(√(3))^(15)+15(√(3))^(14)(\frac{1}{\sqrt[4]{6}})^1+105(√(3))^(13)(\frac{1}{\sqrt[4]{6}})^2+455(√(3))^(12)(\frac{1}{\sqrt[4]{6}})^3+1365(√(3))^(11)(\frac{1}{\sqrt[4]{6}})^4+3003(√(3))^(10)(\frac{1}{\sqrt[4]{6}})^5+5005(√(3))^(9)(\frac{1}{\sqrt[4]{6}})^6+6435(√(3))^(8)(\frac{1}{\sqrt[4]{6}})^7+6435(√(3))^(7)(\frac{1}{\sqrt[4]{6}})^8+5005(√(3))^(6)(\frac{1}{\sqrt[4]{6}})^9+3003(√(3))^(5)(\frac{1}{\sqrt[4]{6}})^(10)+1365(√(3))^(4)(\frac{1}{\sqrt[4]{6}})^(11)+455(√(3))^(3)(\frac{1}{\sqrt[4]{6}})^(12)+105(√(3))^(2)(\frac{1}{\sqrt[4]{6}})^(13)+15(√(3))^(1)(\frac{1}{\sqrt[4]{6}})^(14)+(\frac{1}{\sqrt[4]{6}})^(15)](https://img.qammunity.org/2020/formulas/mathematics/college/95ews3n4ms3dwlmi8jmcirkvg9228wuodc.png)
∵ both
and
are irrational numbers,
And, if the power of √3 is even, it converted to a rational number,
If its power is odd it remained as irrational number,
But, the product of a rational number and irrational number is irrational,
Thus, all terms in the above expansion are irrational. ( which can not expressed in the form of p/q, where, p and q are integers s.t. q ≠ 0 )