110k views
1 vote
Which terms are rational in the expansion of (\sqrt{3} + \frac{1}{\sqrt[4]{6}})^{15} . List the rational terms and justify why the others are not rational.

User Varin
by
8.0k points

1 Answer

3 votes

Answer:


(√(3) + \frac{1}{\sqrt[4]{6}})^(15)

Binomial expansion formula,


(a+b)^n=\sum_(r=0)^(n) ^nC_r (a)^(n-r) (b)^r

Where,


^nC_r=(n!)/(r!(n-r)!)


\implies (√(3) + (1)/(2))^(15)=\sum_(r=0)^(15) ^(15)C_r (√(3))^(15-r) (\frac{1}{\sqrt[4]{6}})^r


=(√(3))^(15)+15(√(3))^(14)(\frac{1}{\sqrt[4]{6}})^1+105(√(3))^(13)(\frac{1}{\sqrt[4]{6}})^2+455(√(3))^(12)(\frac{1}{\sqrt[4]{6}})^3+1365(√(3))^(11)(\frac{1}{\sqrt[4]{6}})^4+3003(√(3))^(10)(\frac{1}{\sqrt[4]{6}})^5+5005(√(3))^(9)(\frac{1}{\sqrt[4]{6}})^6+6435(√(3))^(8)(\frac{1}{\sqrt[4]{6}})^7+6435(√(3))^(7)(\frac{1}{\sqrt[4]{6}})^8+5005(√(3))^(6)(\frac{1}{\sqrt[4]{6}})^9+3003(√(3))^(5)(\frac{1}{\sqrt[4]{6}})^(10)+1365(√(3))^(4)(\frac{1}{\sqrt[4]{6}})^(11)+455(√(3))^(3)(\frac{1}{\sqrt[4]{6}})^(12)+105(√(3))^(2)(\frac{1}{\sqrt[4]{6}})^(13)+15(√(3))^(1)(\frac{1}{\sqrt[4]{6}})^(14)+(\frac{1}{\sqrt[4]{6}})^(15)

∵ both
√(3) and
\frac{1}{\sqrt[4]{6}} are irrational numbers,

And, if the power of √3 is even, it converted to a rational number,

If its power is odd it remained as irrational number,

But, the product of a rational number and irrational number is irrational,

Thus, all terms in the above expansion are irrational. ( which can not expressed in the form of p/q, where, p and q are integers s.t. q ≠ 0 )

User Aledbf
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories