Answer:
248.79 ft
Explanation:
A projectile is fired from a cliff 220 ft above water at an inclination of 45 degrees to the horizontal, with a muzzle velocity of 65 ft per second.
![h(x)=-(32x^2)/(65^2)+x+220](https://img.qammunity.org/2020/formulas/mathematics/college/ts3ax5nfri0hs7lefs29mn8q5yvjqv729h.png)
For maximum value of x, h(x)≥0
![-(32x^2)/(65^2)+x+220\geq0](https://img.qammunity.org/2020/formulas/mathematics/college/89d4lvv2pg44tf8qt2srh4zw2mb7ir9xqq.png)
Solve quadratic equation for x
![-(1)/(4225)(32x^2-4225x-929500)\geq0](https://img.qammunity.org/2020/formulas/mathematics/college/i11vrlhgy9tf1nz3526ttqkhe5f75h6h5f.png)
![32x^2-4225x-929500\leq0](https://img.qammunity.org/2020/formulas/mathematics/college/43281pwxjbqjtgsyxchsdkkqatq9yl79oa.png)
Using quadratic formula,
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wpsjul336yk57nz9umgxw6d875oesezks4.png)
where, a=32, b=-4225, c=-929500
![x=(4225\pm√(4225^2-4(32)(-929500)))/(2(32))](https://img.qammunity.org/2020/formulas/mathematics/college/9ksezrm2w0rav1y9fxi1s848wp16kcqrue.png)
![x\geq-116.75\text{ and }x\leq 248.79](https://img.qammunity.org/2020/formulas/mathematics/college/iyen3h67n0q6llhvdrsf2de84oow7d1xyo.png)
Hence, The maximum value of x will be 248.79 ft