125k views
4 votes
Let A and B be two events in a sample space S such that P(A) = 0.5, P(B) = 0.6, and P(A intersectionB) = 0.15. Find the probabilities below. Hint: (A intersectionBc) union (A intersectionB) = A.

(a) P(A|Bc)

(b) P(B|Ac)

User Amit Das
by
8.0k points

1 Answer

0 votes

Answer:

(a)
(7)/(8)

(b)
(9)/(10)

Explanation:

Given,

P(A) = 0.5 ⇒
P(A^c)=1-P(A) = 1 - 0.5 = 0.5

P(B) = 0.6 ⇒
P(B^c)=1-P(B) = 1 - 0.6 = 0.4

P(A∩B) = 0.15


P(A\cap B^c)=P(A) - P(A\cap B) = 0.5 - 0.15 = 0.35

Similarly,


P(B\cap A^c)=P(B) - P(B\cap A) = 0.6 - 0.15 = 0.45

Now,

(a)
P((A)/(B^c))=(P(A\cap B^c))/(P(B^c))=(0.35)/(0.4)=(35)/(40)=(7)/(8)

(b)
P((B)/(A^c))=(P(B\cap A^c))/(P(A^c))=(0.45)/(0.5)=(45)/(50)=(9)/(10)

User Nicolas Duponchel
by
8.2k points