58.8k views
0 votes
Suppose S = sin(x) + sin(x + α) + sin(x + 2α) + ... + sin(x + nα), n ∈N. What is the value of S?

User GBa
by
6.1k points

1 Answer

2 votes

Answer:


S=(cos(x-(\alpha)/(2))-cos(x+n\alpha-(\alpha)/(2)))/(2sin(\alpha)/(2))

Explanation:

We are given that
S=sin(x) +sin(x+\alpha)+sin(x+2\alpha)+....+sin(x+n\alpha),n\in N

We have to find the value of S

We know that


\sum_(k=0)^(n-1)sin(x+k.d)=(sinn* (d)/(2))/(sin(d)/(2))* sin((2x+(n-1)d)/(2))

We have d=
\alpha

Substitute the values then we get


\sum_(k=0)^(n-1)sin(x+k.\alpha)=(sin(n\alpha)/(2))/(sin(\alpha)/(2))* sin((2x+(n-1)\alpha)/(2))


\sum_(k=0)^(n-1)sin(x+k.\alpha)=(sin(n\alpha)/(2)\cdot sin((2x+(n-1)\alpha)/(2)))/(sin(\alpha)/(2))


S=(sin(n\alpha)/(2)\cdot sin((2x+(n-1)\alpha)/(2)))/(sin(\alpha)/(2))


S=(2sin(n\alpha)/(2)\cdot sin((2x+(n-1)\alpha)/(2)))/(2sin(\alpha)/(2))


S=(cos(x+(n\alpha)/(2)-(\alpha)/(2)-(n\alpha)/(2))-cos(x+(n\alpha)/(2)-(\alpha)/(2)+(n\alpha)/(2)))/(2sin(\alpha)/(2))

Because
cos(x-y)-cos(x+y)=2 sinxsiny


S=(cos(x-(\alpha)/(2))-cos(x+n\alpha-(\alpha)/(2)))/(2sin(\alpha)/(2))

User Teocali
by
5.0k points