Answer with Step-by-step explanation:
Let A and B be non- empty bounded subset of R
a.We have to find why
exist
If A and B are bounded set
Then there exist constant such that
and
![c\leq B\leq d](https://img.qammunity.org/2020/formulas/mathematics/college/jwymlycqq8hjgmy1soag9kdv5nh1j0quqo.png)
Then , sup of A =b and sup of B=d
When a set is bounded then all elements lie in the set are lie between the constants s and t.
All elements are less than or equal to t then t is supremum of set.
Because both set are bounded and sup of both set A and B are exist.All elements A union B are less than or equal to sup A or sup B.
![sup(A\cup B)=max(sup A, sup B)](https://img.qammunity.org/2020/formulas/mathematics/college/n3b9dvm48hjkgr8elycccsjx9vdamge908.png)
Then,
exist.
b.We have to prove that
![sup (A\cup B)=max(sup A,sup B)](https://img.qammunity.org/2020/formulas/mathematics/college/zjtgfe5v4oa6ygciqr8n4z4zwdxry3ari5.png)
Suppose ,A =(1,2) and B=(2,3)
Sup A=2 , sup B=3
![(A\cup B)=(1,2)\cup (2,3)](https://img.qammunity.org/2020/formulas/mathematics/college/273q06rkza8dek8teradgslvfppypej2za.png)
Upper bound of
![A\cup B)=3](https://img.qammunity.org/2020/formulas/mathematics/college/vpx04hczajcx4u6cgj1d6vofruggr6gm4n.png)
Hence,
![Sup (A\cup B)=3](https://img.qammunity.org/2020/formulas/mathematics/college/rsvv296etbnncfrptesi7vupeekryyc8sx.png)
If A=(4,5),B=(2,3)
Sup A=5,Sup B=3
![A\cup B=(4,5)\cup (2,3)](https://img.qammunity.org/2020/formulas/mathematics/college/33whs1ajwkkxud06sxjemb7w3pjxp90jyi.png)
![Sup(A\cup B)=5](https://img.qammunity.org/2020/formulas/mathematics/college/si2b5jjeursb2kr0err90p3bu2rvs7vlqj.png)
Hence,
![Sup(A\cup B)=5](https://img.qammunity.org/2020/formulas/mathematics/college/si2b5jjeursb2kr0err90p3bu2rvs7vlqj.png)
Hence, we can say that
.