123k views
1 vote
An inflatable raft (unoccupied) floats down a river at an approximately constant speed of 5.6 m/s. A child on a bridge, 71 m above the river, sees the raft in the river below and attempts to drop a small stone onto the raft. The child releases the stone from rest. In order for the stone to hit the raft, what must be the horizontal distance between the raft and the bridge when the child releases the stone?

1 Answer

2 votes

Answer:

21.28 m

Step-by-step explanation:

height, h = 71 m

velocity of raft, v = 5.6 m/s

let the time taken by the stone to reach to raft is t.

use second equation of motion for stone


h = ut + (1)/(2)at^(2)

u = 0 m/s, h = 71 m, g = 9.8 m/s^2

71 = 0 + 0.5 x 9.8 x t^2

t = 3.8 s

Horizontal distance traveled by the raft in time t

d = v x t = 5.6 x 3.8 = 21.28 m

User Andre M
by
7.5k points