Answer:
![v_(i) =28.86(ft)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/8l5tl8a2x3owveccgyaj73say1a7q7gufb.png)
Step-by-step explanation:
Conceptual analysis
We apply the kinematic formula for an object that moves vertically upwards:
![(v_(f) )^(2) =(v_(i) )^(2) -2*g*y](https://img.qammunity.org/2020/formulas/physics/high-school/x4x98fy27uzhpcqi460c1zjmx220hzzilf.png)
Where:
: final speed in ft/s
: initial speed in ft/s
g: acceleration due to gravity in ft/s²
y: vertical position at any time in ft
Known data
For
,
; where h is the maximum height
for y=h,
![v_(f) =0](https://img.qammunity.org/2020/formulas/physics/high-school/lqxcvd12qszhsb3gio5roez5ur1ugqumm4.png)
Problem development
We replace
,
in the formula (1),
[
Equation (1)
in maximum height(h):
, Then we replace in formula (1):
![0=(v_(i) )^(2) - 2*g*h](https://img.qammunity.org/2020/formulas/physics/high-school/wmj3ozeai9ljde7t6ks9j0kw4eio67twn9.png)
![2*g*h=(v_(i) )^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/puahitx77hnmv04kly0jckgepc1tzbpmrt.png)
Equation(2)
We replace (h) of Equation(2) in the Equation (1) :
![25^(2) =(v_(i) )^(2) -2g(((v_(i))^(2) )/(2g) )/(4)](https://img.qammunity.org/2020/formulas/physics/high-school/s4d9vr963x19hdlmhhsuetlxkbx3nt36sp.png)
![25^(2) =(v_(i) )^(2) -((v_(i))^(2) )/(4)](https://img.qammunity.org/2020/formulas/physics/high-school/hlysnqnaiepelaxwhqvdunvvsa4queil8u.png)
![25^(2) =(3)/(4) (v_(i) )^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/o5of2cg3vn47aiyvzzvp72bnoproa0ddd3.png)
![v_(i) =\sqrt{(25^(2)*4 )/(3) }](https://img.qammunity.org/2020/formulas/physics/high-school/33gzqjlzsmjzvqhe6c4mz99t1i8230shls.png)
![v_(i) =28.86(ft)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/8l5tl8a2x3owveccgyaj73say1a7q7gufb.png)