Answer: -2.12°C
Explanation:
Let x denotes the reading of the thermometers .
We assume that the readings on the thermometers are normally distributed.
Let a be the reading that separates the rejected thermometers from the others.
Given: Population mean :
![\mu=0](https://img.qammunity.org/2020/formulas/mathematics/college/cbzmcai3zpk3928ro0wrdoua0jzmmi6zgj.png)
Standard deviation:
![\sigma= 1](https://img.qammunity.org/2020/formulas/mathematics/college/712oohfd1e61bni6cj43drh7vozw08u5k0.png)
Also,
![P(x<a)=0.017](https://img.qammunity.org/2020/formulas/mathematics/college/4qq2dyi8gix0j3ji905sbca3ibblf6l44h.png)
By using the z-table , the z-value corresponds to the p-value (one -tailed)0.017 is
.
Now,
![z=(a-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/college/xvvwjcu5siuq2tw2bcdi9f5m3hfgkruml0.png)
i.e.
![\pm2.12=(a-0)/(1)](https://img.qammunity.org/2020/formulas/mathematics/college/gs7pbq8y38c6wuvwc76vuyztm42uo1bhw8.png)
i.e.
![\pm2.12=a](https://img.qammunity.org/2020/formulas/mathematics/college/nu7f3srfl0plwwzt6fe221i1a3ohi03fn4.png)
For left tailed ,
![a=-2.12](https://img.qammunity.org/2020/formulas/mathematics/college/ipbuj0jv45uqh0yj4f4eqgvwkob41fdfek.png)
It means the reading that separates the rejected thermometers from the others = -2.12°C.