We're given
![\displaystyle\lim_(x\to2)\sqrt{(f(x)^2-8x+3)/(x+1)}=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/e8hhr5zx93athlfw2a34xwcj1ccp47nljg.png)
The function
is continuous for all
. If a function
is continuous, then
![\displaystyle\lim_(x\to c)g(h(x))=g\left(\lim_(x\to c)h(x)\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/evx34cdfajtytl117p6mx4ezvkltu5lrbb.png)
This allows us to pass the limit through the square root:
![\displaystyle\sqrt{\lim_(x\to2)(f(x)^2-8x+3)/(x+1)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/cbqp2u0ampyrli1fv6ec853xex8b801hqn.png)
The limit of a quotient is the quotient of limits (provided the limit of the denominator is not 0):
![\sqrt{(\lim\limits_(x\to2)(f(x)^2-8x+3))/(\lim\limits_(x\to2)(x+1))}](https://img.qammunity.org/2020/formulas/mathematics/high-school/6aztddcfjwhkje4xmf21rp7woovn97o1n7.png)
In the numerator, we can distribute the limit as
![\displaystyle\lim_(x\to2)(f(x)^2-8x+3)=\left(\lim_(x\to2)f(x)\right)^2+\lim_(x\to2)(3-8x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5681jz5nll6n0zbzk3215g381jl4z4x4h9.png)
So we end up with
![\sqrt{(\left(\lim\limits_(x\to2)f(x)\right)^2+\lim\limits_(x\to2)(3-8x))/(\lim\limits_(x\to2)(x+1))}=\sqrt{\frac{\left(\lim\limits_(x\to2)f(x)\right)^2-13}3}=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/rsfebu8x41x4s0e18d1g9ybjeriaabps9l.png)
Then we just solve for the desired limit:
![\frac{\left(\lim\limits_(x\to2)f(x)\right)^2-13}3=81](https://img.qammunity.org/2020/formulas/mathematics/high-school/xxpc1vb8uss3z5vlb114y8qhbojqj24nkz.png)
![\left(\lim\limits_(x\to2)f(x)\right)^2-13=243](https://img.qammunity.org/2020/formulas/mathematics/high-school/u45rinv8mtp4vt3eauf1gfl1zqio2jg0h4.png)
![\left(\lim\limits_(x\to2)f(x)\right)^2=256](https://img.qammunity.org/2020/formulas/mathematics/high-school/yr7q106gt4bh27xine7lnufc3t55el7fg3.png)
![\implies\lim\limits_(x\to2)f(x)=\pm16](https://img.qammunity.org/2020/formulas/mathematics/high-school/lldjolgomflzuhysbsxb07k1lmt2lasss8.png)
Obviously the limit can't have two values, so one of these is not right, but only the positive value is one of the answer choices, so the limit is 16.