16.0k views
0 votes
Please help with this limit i don’t know what to do at all!

Please help with this limit i don’t know what to do at all!-example-1
User Neicy
by
5.9k points

1 Answer

3 votes

We're given


\displaystyle\lim_(x\to2)\sqrt{(f(x)^2-8x+3)/(x+1)}=9

The function
\sqrt x is continuous for all
x>0. If a function
g(x) is continuous, then


\displaystyle\lim_(x\to c)g(h(x))=g\left(\lim_(x\to c)h(x)\right)

This allows us to pass the limit through the square root:


\displaystyle\sqrt{\lim_(x\to2)(f(x)^2-8x+3)/(x+1)}

The limit of a quotient is the quotient of limits (provided the limit of the denominator is not 0):


\sqrt{(\lim\limits_(x\to2)(f(x)^2-8x+3))/(\lim\limits_(x\to2)(x+1))}

In the numerator, we can distribute the limit as


\displaystyle\lim_(x\to2)(f(x)^2-8x+3)=\left(\lim_(x\to2)f(x)\right)^2+\lim_(x\to2)(3-8x)

So we end up with


\sqrt{(\left(\lim\limits_(x\to2)f(x)\right)^2+\lim\limits_(x\to2)(3-8x))/(\lim\limits_(x\to2)(x+1))}=\sqrt{\frac{\left(\lim\limits_(x\to2)f(x)\right)^2-13}3}=9

Then we just solve for the desired limit:


\frac{\left(\lim\limits_(x\to2)f(x)\right)^2-13}3=81


\left(\lim\limits_(x\to2)f(x)\right)^2-13=243


\left(\lim\limits_(x\to2)f(x)\right)^2=256


\implies\lim\limits_(x\to2)f(x)=\pm16

Obviously the limit can't have two values, so one of these is not right, but only the positive value is one of the answer choices, so the limit is 16.

User CamiloEr
by
5.4k points