Answer:
7.5 cm
Step-by-step explanation:
In the figure we can see a sketch of the problem. We know that at the bottom of the U-shaped tube the pressure is equal in both branches. Defining
Ethyl alcohol density and
Glycerin density , we can write:
![\rho_A* g * h_1 + \rho_G * g * h_2 = \rho_G * g * h_3](https://img.qammunity.org/2020/formulas/physics/high-school/jyjssn8m745nm2txuub1vjjg1tl0wakx49.png)
Simplifying:
![\rho_A* h_1 = \rho_G * (h_3 - h_2) (1)](https://img.qammunity.org/2020/formulas/physics/high-school/ig4ntiv7quhe50wro6jkvt2xst1jbk69ey.png)
On the other hand:
![h_1 + h_2 = \Delta h + h_3](https://img.qammunity.org/2020/formulas/physics/high-school/rdfxm0y4pg75741vthl6lcpc7v95k9t859.png)
Rearranging:
![h_1 - \Delta h = h_3 - h_2 (2)](https://img.qammunity.org/2020/formulas/physics/high-school/9sm7bzdd3q4mnoeki056all2odr10ppv6a.png)
Replacing (2) in (1):
![\rho_A* h_1 = \rho_G * (h_1 - \Delta h)](https://img.qammunity.org/2020/formulas/physics/high-school/3urzb5zxkpsh9f264kyb8q7ul26bdcms99.png)
Rearranging:
![(h_1 * (\rho_A - \rho_G))/(- \rho_G) = \Delta h](https://img.qammunity.org/2020/formulas/physics/high-school/ki3i0dxaini1a3zve7pcerj9rd7ztvafiz.png)
Data:
![h_1 = 20 cm; \rho_A = 0.789 (g)/(cm^3); \rho_G = 1.26 (g)/(cm^3)](https://img.qammunity.org/2020/formulas/physics/high-school/z5fd8wuyqkweaeusm97zi8boiihbiklr9f.png)
![(20 cm * (0.789 - 1.26) (g)/(cm^3))/(- 1.26(g)/(cm^3)) = \Delta h](https://img.qammunity.org/2020/formulas/physics/high-school/2xrnnqnp0tjmrp7gf8y3ui1w436vd5mpzr.png)
![7.5 cm = \Delta h](https://img.qammunity.org/2020/formulas/physics/high-school/l8pp9cd59z5hez9oujcjkincjnpcv32a8u.png)