Answer: 0.2643
Explanation:
Given : The proportion of adults are unemployed : p=0.077
The sample size = 300
By suing normal approximation to the binomial , we have
![\mu=np=300*0.077=23.1](https://img.qammunity.org/2020/formulas/mathematics/college/ih9weqxsfofbvot2a7xuzjn238q93v81jz.png)
![\sigma=√(np(1-p))=√(300*0.077(1-0.077))\\\\=4.61749932323\approx4.62](https://img.qammunity.org/2020/formulas/mathematics/college/ul8nymuk3c2s283095oolo6z08raoagfk5.png)
Now, using formula
, the z-value corresponding to 26 will be :-
![z=(26-23.1)/(4.62)\approx0.63](https://img.qammunity.org/2020/formulas/mathematics/college/9wmh0dz5jofxo54ur29cgepsdn60183tow.png)
Using standard distribution table for z , we have
P-value=
![P(z\geq0.63)=1-P(z<0.63)](https://img.qammunity.org/2020/formulas/mathematics/college/k11zdcesona3fvsjtgn7coa06d6ffuz246.png)
![=1-0.7356527=0.2643473\approx0.2643](https://img.qammunity.org/2020/formulas/mathematics/college/qfyr6b4js10kvlbvtuidvgdw5r2e4u96u7.png)
Hence, the probability that at least 26 in the sample are unemployed =0.2643