135k views
0 votes
Evaluate the surface integral ∫∫ F.ds for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.

F(x,y,z)=xi+yj+5k
S is the coundary of the region enclosed by the cylinder x^2+z^2=1 and the planes y=0 and x+y=2

1 Answer

0 votes

Use the divergence theorem.


\vec F(x,y,z)=x\,\vec\imath+y\,\vec\jmath+5\,\vec k\implies\mathrm{div}\vec F(x,y,z)=2

By the divergence theorem,


\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\iiint_R\mathrm{div}\vec F\,\mathrm dV

where
R is the region with boundary
S.

Compute the latter integral in cylindrical coordinates, taking


\begin{cases}x=r\cos\theta\\y=y\\z=r\sin\theta\end{cases}\implies\mathrm dV=r\,\mathrm dr\,\mathrm d\theta\,\mathrm dy


\displaystyle\iint_R2\,\mathrm dV=2\int_0^(2\pi)\int_0^1\int_0^(2-r\cos\theta)r\,\mathrm dy\,\mathrm dr\,\mathrm d\theta=\boxed{4\pi}

User Andrewdotn
by
5.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.