213k views
2 votes
A hiker walks 4 km north and then 5 km northeast. Draw displacement vectors representing the hiker's trip and draw a vector that represents the hiker's net displacement from the starting point.

1 Answer

5 votes

Answer:


u+v =8.323717394km

Ф=
64.86489406°

Explanation:


u=4km


v=5km

For easy calculations let's decompose the vector in its rectangular components:


u_x=u*cos(\alpha )=4000*cos(90)=4000*0=0


u_y=u*sin(\alpha )=5000*sin(90)=4000*1=4000


v_x=v*cos(\beta )=5000*cos(45)=3535.533906


v_y=v*sin(\beta )=5000*sin(45)=3535.533906

Now lets calculate the resultant vector:


u+v=R


R=R_x+R_y


R_x=u_x+v_x=0+3535.533906=3535.533906


R_x=u_y+v_y=4000+3535.533906=7535.533906

Finally let´s calculate the magnitude and direction of R:


R║=
\sqrt{(R_x)^(2)+(R_y)^(2)  }=\sqrt{(3535.533906)^(2)+(7535.533906)^(2)  }  =8.323717394km

Ф=
arctan((R_y)/(R_x))=arctan((7535.533906)/(3535.533906))=64.86489406°

A hiker walks 4 km north and then 5 km northeast. Draw displacement vectors representing-example-1
A hiker walks 4 km north and then 5 km northeast. Draw displacement vectors representing-example-2
User Yihui Xie
by
5.6k points