Answer:
Claim :The proportion, p, of full-term babies born in their hospital that weigh more than 7 pounds is 36%.
n = 170
x = 56
We will use one sample proportion test



The proportion, p, of full-term babies born in their hospital that weigh more than 7 pounds is 36%.

Formula of test statistic =


=−0.8311
Now refer the p value from the z table
P-Value is .202987 (Calculated by online calculator)
Level of significance α = 0.05
Since p value < α
So we reject the null hypothesis .
Hence the claim is true