Final answer:
To find the probability, you need to calculate the number of ways to choose one Macintosh and one Windows computer from the given options and divide it by the total number of ways to choose two computers. The probability is 0.507.
Step-by-step explanation:
To find the probability that the sample contains exactly one Windows machine and exactly one Macintosh machine, we can use the concept of combinations. There are a total of 30 computers, out of which 17 are Macintosh and 13 are Windows. The number of ways to choose one Macintosh and one Windows computer can be calculated by multiplying the number of ways to choose one Macintosh from 17 and the number of ways to choose one Windows from 13.
The number of ways to choose one Macintosh from 17 is C(17, 1) = 17 and the number of ways to choose one Windows from 13 is C(13, 1) = 13. Therefore, the total number of ways to choose one Macintosh and one Windows computer is 17 * 13 = 221.
The sample space is the total number of ways to choose two computers from 30, which is C(30, 2) = 435. So the probability of selecting exactly one Windows machine and exactly one Macintosh machine is 221 / 435 = 0.507.