Answer:
0.0567 N
Step-by-step explanation:
q1 = 3 micro coulomb
q2 = - 2 micro coulomb
OB = 50 cm
AB = 60 cm
By using Pythagoras theorem in triangle OAB
![OA^(2)=OB^(2)+AB^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a0rz9e2pceqxg5gr19bbez7o2z3w4ubout.png)
![OA^(2)=50^(2)+60^(2)=6100](https://img.qammunity.org/2020/formulas/physics/college/rjff45ny2b9whbv7okwonso01mohb6dmth.png)
OA = 78.1 cm
By using the Coulomb's law, the force on 3 micro coulomb due to -2 micro coulomb is
![F=\frac {Kq_(1)q_(2)}{OA^(2)}= \frac{9 * 10^(9)}* 3* 10^(-6) * 2 * 10^(-6){0.781^(2)}](https://img.qammunity.org/2020/formulas/physics/college/p0tlvb4jdocc9q0daxvy1y7zlqjhr6l97s.png)
F = 0.0885 N
The horizontal component of force is
= F CosФ =
![F* (OB)/(OA)](https://img.qammunity.org/2020/formulas/physics/college/namf3w3h8swtjdux24tynl38g76j0dt5e7.png)
= 0.0885 x 50 / 78.1 = 0.0567 N