Answer:
B)
![(x + 3)^2 - 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/grtb3do5qw5o4ofqn0j22yi77wmsjrhgot.png)
Explanation:
the equation is:
![x^2 + 6x + 4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jt3g4chc34ge0f2hmfg6ze4ivvzvw2mfhy.png)
we have an equation of the form
![ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h659q3lwo0rr5k14nobf201fb1azvp77vr.png)
where
![a=1,b=6,c=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o3saii51sop6zawb1wfii95fague6egsna.png)
and we must complete the square to obtain a perfect square binomial,
we must add and substract the following:
![((b)/(2a) )^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rhbn2nx0zal6iwgc7dzs5509kqjqjtkpa4.png)
which is:
![((6)/(2*1) )^2=3^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9xfdgitd2sxf3sz9hvz1yzwkgp92rep49i.png)
and then the equation becomes:
![x^2 + 6x + 4+3^2-3^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2l0f38598hq2liy9bpj7ys0o726ertmayq.png)
where the terms
are the components of the perfect square binomial:
![(x+3)^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/d5euwc5rc21xi4aqv4cdrzso771y1uq1cz.png)
and thus, the equation now is:
![(x+3)^2+4-3^2\\=(x-3)^2+4-9\\=(x+3)^2-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qs7qgueql8xn2otgh9olf9l1rci4kec25k.png)
the answer is: B)
![(x + 3)^2 - 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/grtb3do5qw5o4ofqn0j22yi77wmsjrhgot.png)