Answer:
(a) 14.88 ohm
(b) 1.88 A
(c) -74.4°
Step-by-step explanation:
Vo = 28 V
f = 12 kHz = 12000 Hz
R = 4 ohm
L = 30 micro henry = 30 x 10^-6 H
C = 800 nF = 800 x 10^-9 F
(a)
The inductive reactance,
XL = 2 π f L = 2 x 3.14 x 12000 x 30 x 10^-6 = 2.26 ohm
The capacitive reactance
![X_(c)=(1)/(2\pi fC)=(1)/(2 * 3.14 * 12000 * 800 * 10^(-9))](https://img.qammunity.org/2020/formulas/physics/college/kaoovywlhf99im0i7axce170iwtddzk065.png)
Xc = 16.59 ohm
Let the impedance is Z.
![Z=\sqrt{4^(2)+\left ( 2.26-16.59 \right )^(2)}](https://img.qammunity.org/2020/formulas/physics/college/jnn67ji3hpttsl07bxoaofwux2vuam2llu.png)
Z = 14.88 ohm
(b)
The formula for the amplitude of current
![I_(o)=(V_(o))/(Z)=(28)/(14.88)](https://img.qammunity.org/2020/formulas/physics/college/e1goetftpwp1w77zwfyh90fkkuohfbw6i4.png)
Io = 1.88 A
(c)
Let the phase difference is Ф
![tan\phi =(X_(L)-X_(C))/(R)=(2.26-16.59)/(4)=-3.5825](https://img.qammunity.org/2020/formulas/physics/college/zobza08fj6j1bs4ycalbzrub34lpel6cm2.png)
Ф = -74.4°