12,382 views
25 votes
25 votes
How would I find the angles of the triangle with the given vertices?

How would I find the angles of the triangle with the given vertices?-example-1
User AnthonyM
by
2.8k points

1 Answer

19 votes
19 votes

Let
\vec a,\vec b,\vec c be vectors that point to
A,B,C, respectively.


\vec a = 7\,\vec\imath+8\,\vec\jmath+2\,\vec k


\vec b = 2\,\vec\imath + \vec\jmath + 2\,\vec k


\vec c = -5\,\vec\imath-6\,\vec\jmath-6\,\vec k

Then consider the directed line segments
AB,
BC, and
CA, to which we'll assign the vectors


AB ~:~ \vec b - \vec a = -5\,\vec\imath - 7\,\vec\jmath


BC ~:~ \vec c - \vec b = -7\,\vec\imath-7\,\vec\jmath-8\,\vec k


CA ~:~ \vec a - \vec c = 12\,\vec\imath+14\,\vec\jmath+8\,\vec k

whose lengths are


\|\vec b - \vec a\| = √((-5)^2+(-7)^2) = √(74)


\|\vec c - \vec b\| = √((-7)^2+(-7)^2+(-8)^2) = √(162) = 9\sqrt2


\|\vec a - \vec c\| = √(12^2+14^2+8^2) = √(404) = 2√(101)

The angle at vertex
A is made by the directed segments
AB and
AC, corresponding to
\vec b-\vec a and
\vec c-\vec a. Use the dot product identity to find the measure of
\angle A.


(\vec b - \vec a) \cdot (\vec c - \vec a) = \|\vec b - \vec a\| \|\vec c - \vec a\| \cos\left(m\angle A\right) \\\\ 158 = 2√(7474) \cos\left(m\angle A\right) \\\\ \cos\left(m\angle A\right) = (79)/(√(7474)) \\\\ m\angle A = \cos^(-1)\left((79)/(√(7474))\right) \approx \boxed{23.964^\circ}

Similarly, the angle at
B is made by
\vec a-\vec b and
\vec c-\vec b[/tex]. Then


(\vec a-\vec b) \cdot (\vec c - \vec b) = \|\vec a - \vec b\| \|\vec c - \vec b\| \cos\left(m\angle B\right) \\\\ \cos\left(m\angle B\right) = -(14)/(3√(37)) \\\\ m\angle B = \cos^(-1)\left(-(14)/(3√(37))\right) \approx \boxed{140.103^\circ}

Do the same for
C, or simply use the fact that the interior angles in any triangle sum to 180°. You should find


m\angle C = \cos^(-1)\left((41)/(3√(202))\right)  = 180^\circ - m\angle A - m\angle B \approx \boxed{15.933^\circ}

User Troex
by
2.8k points