Answer:
The cost of producing 100 items is $723.35
Explanation:
The marginal cost is the derivative of the total cost function, so we have
![C^(')(x)=1.65-0.002x](https://img.qammunity.org/2020/formulas/mathematics/college/3g2ernp1mh4e6w4ebi4f1worb0nnmwyzw1.png)
To find the total cost function we need to do integration
![C(x)= \int\, C^(')(x)dx \\C(x)=\int\,(1.65-0.002x) dx](https://img.qammunity.org/2020/formulas/mathematics/college/bhloqybilam3gm7gbdsye32k6rzussbaq9.png)
Apply the sum rule to find the integral
![\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)](https://img.qammunity.org/2020/formulas/mathematics/college/u6lvkwo9wu8azdg8xqxdbowhrc86zksnjf.png)
![\int \:1.65dx=1.65x\\\int \:0.002xdx=0.001x^2](https://img.qammunity.org/2020/formulas/mathematics/college/suo71tsqoi1ynxfsqns8w5mv9qbdqc7oc8.png)
![C(x)=\int\,(1.65-0.002x) dx = 1.65x-0.001x^2+D](https://img.qammunity.org/2020/formulas/mathematics/college/6keo7m75cxr4xks3gfd498x2jajaz2plzw.png)
D is the constant of integration
We are given that C(1) = $570, we can use this to find the value of the constant in the total cost function
![C(1)=570=1.65*(1)+0.001*(1)^2+D\\D=570-1.649=568.351](https://img.qammunity.org/2020/formulas/mathematics/college/xd3ryqv0aslbj5l0oqcl9ap4s5mjpt0muk.png)
So the total cost function is
and the cost of producing 100 items is
x=100
![C(100)=1.65*(100)-0.001*(100)^2+568.351 = 723.35](https://img.qammunity.org/2020/formulas/mathematics/college/15bfch5k1h7iinkddgf2s8bcopxfu5pemz.png)