Answer:
The rate constant
at 84.8°C is
![k_(2)=6.423sec^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/ckwx1vkzt8yj2f55rvdp5lu804v66q8a6g.png)
Step-by-step explanation:
Taking the Arrhenius equation we have:
![ln(k_(2))/(k_(1))=(E_(a))/(R)((1)/(T_(1))-(1)/(T_(2)))](https://img.qammunity.org/2020/formulas/chemistry/college/pjb0g23ba0b4budxp8bcx88oea3bscu1wq.png)
Where
is the rate constant at a temperature 2,
is the rate constant at a temperature 1;
is the temperature 1,
is the temperature 2, R is the gas constant and
is the activation energy.
Now, we need to solve the equation for
, so we have:
![ln(k_(2))/(k_(1))=(E_(a))/(R)((1)/(T_(1))-(1)/(T_(2)))](https://img.qammunity.org/2020/formulas/chemistry/college/pjb0g23ba0b4budxp8bcx88oea3bscu1wq.png)
![ln({k_(2))-ln(k_(1))=(E_(a))/(R)((1)/(T_(1))-(1)/(T_(2)))](https://img.qammunity.org/2020/formulas/chemistry/college/xs24is7l00x8ru52u73s5upe34b8i0xgxq.png)
![ln(k_(2))=E_(a)((1)/(T_(1))-(1)/(T_(2)))+ln(k_(1))](https://img.qammunity.org/2020/formulas/chemistry/college/2gax1yyow2hyst01tvyz43eqw1updqnwm1.png)
Then we need to make sure that we are working with the same units, so:
![R=8.314(J)/(mol.K)](https://img.qammunity.org/2020/formulas/chemistry/college/st5fzop0k1orf9l5aqtob8bs0plhkh71g0.png)
![T_(1)=16.6^(o)C+273.15=289.75K](https://img.qammunity.org/2020/formulas/chemistry/college/2o43qp7o9sejk8xu2qwnfg3jd6pa44uh1m.png)
![T_(2)=84.4^(o)C+273.15=357.95K](https://img.qammunity.org/2020/formulas/chemistry/college/5rr29czklcs8vfiz68e1b0kzipndzxvbxo.png)
And now we can replace the values into the equation:
![ln(k_(2))=(22000(J)/(mol))/(8.314(J)/(mol.K))((1)/(289.75K)-(1)/(357.95K))+ln(1.868sec^(-1))](https://img.qammunity.org/2020/formulas/chemistry/college/vwe0md3h8shvnc76wast6y2nxdzg339uqy.png)
![ln(k_(2))=2646.139K(0.003451K^(-1)-0.002794K^(-1))+0.6249](https://img.qammunity.org/2020/formulas/chemistry/college/4kzabimxawh12ru64zamtoz7b7rdze7ql6.png)
![ln(k_(2))=2.363sec^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/1dd5cqqtq5q00l9rzze8i0l6iojjzsares.png)
To solve the ln we have to apply e in both sides of the equation, so we have:
![e^{ln(k_(2))}=e^(2.363)sec^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/znvg4y6dx52qxl8f5y2kjcnjg996vpdgxb.png)
![k_(2)=6.423sec^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/ckwx1vkzt8yj2f55rvdp5lu804v66q8a6g.png)