8.6k views
4 votes
Air is contained in a vertical piston–cylinder assembly such that the piston is in static equilibrium. The atmosphere exerts a pressure of 101 kPa on top of the 0.5-m-diameter piston. The gage pressure of the air inside the cylinder is 1.2 kPa. The local acceleration of gravity is g = 9.81 m/s2 . Subsequently, a weight is placed on top of the piston causing the piston to fall until reaching a new static equilibrium position. At this position, the gage pressure of the air inside the cylinder is 2.8 kPa. Determine (a) the mass of the piston, in kg, and (b) the mass of the added weight, in kg

1 Answer

1 vote

Answer:

a) 24 kg

b) 32 kg

Step-by-step explanation:

The gauge pressure is of the gas is equal to the weight of the piston divided by its area:

p = P / A

p = m * g / (π/4 * d^2)

Rearranging

p * (π/4 * d^2) = m * g

m = p * (π/4 * d^2) / g

m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg

After the weight is added the gauge pressure is 2.8kPa

The mass of piston plus addded weight is

m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg

56 - 24 = 32 kg

The mass of the added weight is 32 kg.

User Anurag Srivastava
by
5.5k points