Answer:
For the values of y greater than
![(3)/(17)](https://img.qammunity.org/2020/formulas/mathematics/high-school/o7hpo9x2e7mdrzx053kmesldmw5qt8s4dq.png)
Explanation:
Suppose 5y-1 greater than the value of the fraction
![(3y-1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/r2imujjatiecc4zcx0drhtv2boqf39oy5k.png)
That is,
![5y - 1 > (3y-1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5aeh53sswq490wt7mnx0fsbxo8tyjrsz6e.png)
![4(5y - 1) > 3y - 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/sa8bu78i4bz1408c7jpq2hb843z42gosko.png)
![20y - 4 > 3y - 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/f9b76udhgs3pinppidmpfamx48oourjm68.png)
![20y - 3y > -1 + 4](https://img.qammunity.org/2020/formulas/mathematics/high-school/icztrr26g9sv767h5w7buq44y2m2seatvc.png)
![17y > 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/chwybnma0pllpzni72zgchpeuuppfwov0u.png)
( a > b ⇒
where, d > 0 )
Hence, for the values of y greater than
the value of the binomial 5y-1 greater than the value of the fraction
.