Answer: 10
Explanation:
The formula to find the sample size is given by :-
![n=((z_(\alpha/2)\ \sigma)/(E))^2](https://img.qammunity.org/2020/formulas/mathematics/college/zh95zzbzu2pz00whdtk654hzw1p0i0937y.png)
Given : Significance level :
![\alpha=1-0.99=0.1](https://img.qammunity.org/2020/formulas/mathematics/college/smjvxui6ur9el4j0ho4e70vxi2g0181rzf.png)
Critical z-value=
![z_(\alpha/2)=2.576](https://img.qammunity.org/2020/formulas/mathematics/college/xu4qa8f21pkyf4fo2ns7p8b8ensbc4vsoc.png)
Margin of error : E=5
Standard deviation :
![\sigma=6](https://img.qammunity.org/2020/formulas/mathematics/high-school/nuz1cjgq4cwxrs3onamzqx7vd5tmv5342x.png)
Now, the required sample size will be :_
![n=(((2.576)\ 6)/(5))^2=9.55551744\approx10](https://img.qammunity.org/2020/formulas/mathematics/college/5nieatft6cwpldtfue50dbva108ypj3t6c.png)
Hence, the final sample required to be of 10 .