Answer:
![D_(B)=1173.98m\\D_(C)=675.29m](https://img.qammunity.org/2020/formulas/physics/college/uovcjaazh13lyt2ge5utckgu9sf0sxbyku.png)
Step-by-step explanation:
If we express all of the cordinates in their rectangular form we get:
A = (1404.77 , 655.06) m
![B = A + ( -D_(B) *sin(41) , -D_(B) * cos(41) )](https://img.qammunity.org/2020/formulas/physics/college/2e1cbr15zpipaj8ica2rzjsibft2btrx6v.png)
![C = A + B + ( -D_(C) *cos(20) , D_(C) * sin(20) )](https://img.qammunity.org/2020/formulas/physics/college/32egjzeulqvyap324bxbaozbzdxta1501a.png)
Since we need C to be (0,0) we stablish that:
![C = (0,0) = A + B + ( -D_(C) *cos(20) , D_(C) * sin(20) )](https://img.qammunity.org/2020/formulas/physics/college/ks2o3i2xh4r6evvulhqgcf1fwm1ca6ptw8.png)
That way we make an equation system from both X and Y coordinates:
![A_(x) + B_(x) + C_(x) = 0](https://img.qammunity.org/2020/formulas/physics/college/4ulnypghqb4jgpf4pi7mw1n7t6dyx0nutq.png)
![A_(y) + B_(y) + C_(y) = 0](https://img.qammunity.org/2020/formulas/physics/college/goosrwdrcrr8zvb48cv09lmsg58z9jq54f.png)
Replacing values:
With this system we can solve for both Db and Dc and get the answers to the question:
![D_(B)=1173.98m](https://img.qammunity.org/2020/formulas/physics/college/riwvz4va9eu115vvzdveuaw1c5tehwcqo8.png)
![D_(C)=675.29m](https://img.qammunity.org/2020/formulas/physics/college/r03yw0cchiavypwdzcnqhha78n6qdl75wz.png)