Answer:
![a. \hspace{3} P(A\bigcap B) = (3)/(4)\\\\b. \hspace{3} P(A\bigcup B) = (47)/(50)\\\\c. \hspace{3} P(A'\bigcup B) = (17)/(20)\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/kvn03opypkep2ooireetksyn884bixmp15.png)
Explanation:
The information is configured in a double entry table in which the finishing information for the edge and surface is recorded, thus:
![\begin{array}{cccc}&E&B&Total\\E&75&4&79\\B&15&6&21\\&90&10&100\\\end{array}](https://img.qammunity.org/2020/formulas/mathematics/college/27k3n6fly4cid6k3tgwvxkqxc2lddooh17.png)
Let A denote the event that a sample has excellent surface finish, and let B denote the event that a sample has excellent edge finish.
![a. \hspace{3} P(A\bigcap B) = (75)/(100) = (3)/(4)\\\\b. \hspace{3} P(A\bigcup B) = P(A) + P(B) - P(A\bigcap B) = (90)/(100)+(79)/(100) - (75)/(100) = (94)/(100) =(47)/(50)\\\\c. \hspace{3} P(A'\bigcup B) = P(A') + P(B) - P(A'\bigcap B) = (10)/(100)+(79)/(100) - (4)/(100) = (85)/(100) =(17)/(20)\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/yyo0l1zdfqjhxtqsp028xdrx72yq8lm7y1.png)