Answer:
![(0.367,\ 0.473)](https://img.qammunity.org/2020/formulas/mathematics/college/ud6akhopbn6kihayx6a8eqt2rh5g9bne7x.png)
Explanation:
The confidence interval for population mean is given by :-
![\hat{p}\pm z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/pxj5zva1u6igd7xybc6x9ei113i3mgmyt5.png)
, where
is the sample proportion, n is the sample size ,
is the critical z-value.
Given : Significance level :
![\alpha:1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/4luqlyffsmoibptr1pdun8gze7b60dqc4i.png)
Sample size : n= 85
Critical value :
![z_(\alpha/2)=2.576](https://img.qammunity.org/2020/formulas/mathematics/college/xu4qa8f21pkyf4fo2ns7p8b8ensbc4vsoc.png)
Sample proportion:
![\hat{p}=(36)/(85)\approx0.42](https://img.qammunity.org/2020/formulas/mathematics/college/ysg0h58u5n5ctnbutnvlwmz56dxwxqhr2h.png)
Now, the 99% confidence level will be :
![\hat{p}\pmz_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\\\\=0.42\pm(2.576)\sqrt{(0.42(1-0.42))/(85)}\\\\\approx0.42\pm0.053\\\\=(0.42-0.053,\ 0.42+0.053)=(0.367,\ 0.473)](https://img.qammunity.org/2020/formulas/mathematics/college/39ewbt0w9hns83ct7ittrr67w7bh4hcoxk.png)
Hence, the 99% confidence interval estimate of the true proportion of families who own at least one DVD player is
![(0.367,\ 0.473)](https://img.qammunity.org/2020/formulas/mathematics/college/ud6akhopbn6kihayx6a8eqt2rh5g9bne7x.png)