191k views
5 votes
A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary, and the electron has a speed of 7.5 105 m/s. Find the radius between the stationary proton and the electron orbit within the hydrogen atom.

1 Answer

4 votes

Answer:

450 pm

Step-by-step explanation:

The electron is held in orbit by an electric force, this works as the centripetal force. The equation for the centripetal acceleration is:

a = v^2 / r

The equation for the electric force is:

F = q1 * q2 / (4 * π * e0 * r^2)

Where

q1, q2: the electric charges, the charge of the electron is -1.6*10^-19 C

e0: electric constant (8.85*10^-12 F/m)

If we divide this force by the mass of the electron we get the acceleration

me = 9.1*10^-31 kg

a = q1 * q2 / (4 * π * e0 * me * r^2)

v^2 / r = q1 * q2 / (4 * π * e0 * me * r^2)

We can simplify r

v^2 = q1 * q2 / (4 * π * e0 * me * r)

Rearranging:

r = q1 * q2 / (4 * π * e0 * me * v^2)

r = 1.6*10^-19 * 1.6*10^-19 / (4 * π * 8.85*10^-12 * 9.1*10^-31 * (7.5*10^5)^2) = 4.5*10^-10 m = 450 pm

User Dmitry Ostashev
by
5.5k points