154k views
2 votes
Three vectors →a, →b, and →c each have a magnitude of 50 m and lie in an xy plane. Their directions relative to the positive direction of the x axis are 30°, 195°, and 315°, respectively. What are (a) the magnitude and (b) the angle of the vector →a+→b+→c and (c) the magnitude and (d) the angle of →a−→b+→c? What are the (e) magnitude and (f) angle of a fourth vector →d such that (→a+→b)−(→c+→d)=0 ?

User Jay Levitt
by
7.9k points

1 Answer

6 votes

Answer:

(a): 37.94 m.

(b):
323.16^\circ.

(c): 126.957 m.

(d):
0.93^\circ.

(e): 49.92 m.

(f):
130.08^\circ.

Step-by-step explanation:

Given:

  • Magnitude of
    \vec a = 50 m.
  • Direction of
    \vec a = 30^\circ.
  • Magnitude of
    \vec b = 50 m.
  • Direction of
    \vec b = 195^\circ.
  • Magnitude of
    \vec c = 50 m.
  • Direction of
    \vec c = 315^\circ.

Any vector
\vec A, making an angle
\theta with respect to the positive x-axis,
can be written in terms of its x and y components as follows:


\vec A = A\cos\theta\ \hat i+A\sin\theta \ \hat j.

where,
\hat i,\ \hat j are the unit vectors along the x and y axes respectively.

Therefore, the given vectors can be written as


\vec a = 50\cos30^\circ \ \hat i+50\sin 30^\circ\ \hat j = 43.30\ \hat i +25\ \hat j\\\vec b = 50\cos195^\circ \ \hat i+50\sin 195^\circ\ \hat j = -48.29\ \hat i +-12.41\ \hat j\\\vec c = 50\cos 315^\circ \ \hat i+50\sin 315^\circ\ \hat j = 35.35\ \hat i +-35.35\ \hat j\\

(a):


\vec a +\vec b + \vec c=  (43.30\ \hat i +25\ \hat j)+(-48.29\ \hat i +-12.41\ \hat j)+(35.35\ \hat i +-35.35\ \hat j)\\=(43.30-48.29+35.35)\hat i+(25-12.41-35.35)\hat j\\=30.36\hat i-22.75\hat j.\\\\\text{Magnitude }=√(30.36^2+(-22.75)^2)=37.94\ m.

(b):

Direction
\theta can be found as follows:


\tan\theta = \frac{\text{x component of }(\vec a + \vec b +\vec c)}{\text{y component of }(\vec a + \vec b +\vec c)}=(-22.75)/(30.36)=-0.749\\\Rightarrow \theta = \tan^(-1)(-0.749)=-36.84^\circ.

The negative sign indicates that the sum of the vectors is
36.84^\circ. below the positive x axis.

Therefore, direction of this vector sum counterclockwise with respect to positive x-axis =
360^\circ-36.84^\circ=323.16^\circ.

(c):


\vec a -\vec b + \vec c=  (43.30\ \hat i +25\ \hat j)-(-48.29\ \hat i +-12.41\ \hat j)+(35.35\ \hat i +-35.35\ \hat j)\\=(43.30+48.29+35.35)\hat i+(25+12.41-35.35)\hat j\\=126.94\hat i+2.06\hat j.\\\\\text{Magnitude }=√(126.94^2+2.06^2)=126.957\ m.

(d):

Direction
\theta can be found as follows:


\tan\theta = \frac{\text{x component of }(\vec a - \vec b +\vec c)}{\text{y component of }(\vec a - \vec b +\vec c)}=(2.06)/(126.94)=0.01623\\\Rightarrow \theta = \tan^(-1)(0.01623)=0.93^\circ.

(e):


(\vec a + \vec b)-(\vec c + \vec d)=0\\(\vec a + \vec b)=(\vec c + \vec d)\\\vec d = \vec a + \vec b -\vec c.


\vec d = \vec a +\vec b - \vec c=  (43.30\ \hat i +25\ \hat j)+(-48.29\ \hat i +-12.41\ \hat j)-(35.35\ \hat i +-35.35\ \hat j)\\=(43.30-48.29-35.35)\hat i+(25-12.41+35.35)\hat j\\=-40.34\hat i+47.94\hat j.\\\\\text{Magnitude }=√((-40.34)^2+47.94^2)=62.65\ m.

(f):

Direction
\theta can be found as follows:


\tan\theta = \frac{\text{x component of }\vec d}{\text{y component of }\vec d}=(47.94)/(-40.34)=-1.188\\\Rightarrow \theta = \tan^(-1)(-1.188)=-49.92^\circ.

The x component of this vector is negative and y component is positive therefore the vector lie in second quadrant, which means, the direction of this vector, counterclockwise with respect to positive x axis =
180^\cir.</p><p>c-49.92^\circ=130.08^\circ.

User Ferry To
by
8.1k points