60.6k views
0 votes
Integrate the following

Integrate the following-example-1

1 Answer

3 votes

I suppose you mean to have the entire numerator under the square root?


\displaystyle\int_2^4(√(x^2-4))/(x^2)\,\mathrm dx

We can use a trigonometric substitution to start:


x=2\sec t\implies\mathrm dx=2\sec t\tan t\,\mathrm dt

Then for
x=2,
t=\sec^(-1)1=0; for
x=4,
t=\sec^(-1)2=\frac\pi3. So the integral is equivalent to


\displaystyle\int_0^(\pi/3)(√((2\sec t)^2-4))/((2\sec t)^2)(2\sec t\tan t)\,\mathrm dt=\int_0^(\pi/3)(\tan^2t)/(\sec t)\,\mathrm dt

We can write


(\tan^2t)/(\sec t)=\frac{(\sin^2t)/(\cos^2t)}{\frac1{\cos t}}=(\sin^2t)/(\cos t)=(1-\cos^2t)/(\cos t)=\sec t-\cos t

so the integral becomes


\displaystyle\int_0^(\pi/3)(\sec t-\cos t)\,\mathrm dt=\boxed{\ln(2+\sqrt3)-\frac{\sqrt3}2}

User Vamshi Vangapally
by
8.2k points