Answer:
398 m/s
Step-by-step explanation:
The acceleration is given by:
a = K/(L - x)^2
K = 100 m^3/s^2
L = 0.169 m
This acceleration will result in a force:
F = m * a
F = m * K/(L - x)^2
This force will perform a work:
W = F * L
The ball will advance only until x = L - D/2
![W = m * K \int\limits^(L - D/2)_0 {(1)/((L - x)^2)} \, dx](https://img.qammunity.org/2020/formulas/physics/college/47nzkyj7sbd4vxq3cmlrnbzhjl5qjj0d9m.png)
This work will be converted to kinetic energy
W = Ek
Ek = 1/2 * m * v^2
![1/2 * m * v^2 = m * K \int\limits^(L - D/2)_0 {(1)/((L - x)^2)} \, dx](https://img.qammunity.org/2020/formulas/physics/college/2vzljguc3xi0ood9r28by6b4orl1qsep6l.png)
![1/2 * v^2 = K \int\limits^(L - D/2)_0 {(1)/((L - x)^2)} \, dx](https://img.qammunity.org/2020/formulas/physics/college/ndh95iz5fp4r6d1rk7k0db02m9wbxj0a8h.png)
First we solve thr integral:
![K \int\limits^(L - D/2)_0 {(1)/((L - x)^2)} \, dx](https://img.qammunity.org/2020/formulas/physics/college/g017q7y9ibjiln6e5zbr8cj8a6mg4qe9mk.png)
We use the replacement
u = L - x
du = -dx
And the limits
When x = L - D/2, u = D2/2, and when x = 0, u = L
![-K \int\limits^(D/2)_L {u^-2}} \, du](https://img.qammunity.org/2020/formulas/physics/college/uhsr3a38re42lh3usnlnxc2cq4nc9u6pza.png)
K / u evaluated between L and D/2
2*K / D - K / L
Then
1/2 * v^2 = 2*K / D - K / L
1/2 * v^2 = K * (2/D - 1/L)
v^2 = 2*K*(2/D - 1/L)
![v = √(2*K*(2/D - 1/L))](https://img.qammunity.org/2020/formulas/physics/college/flhsd0l2fxqzxr02e16mwwyca8umdil8qm.png)
![v = √(2*100*(2/0.0025 - 1/0.169)) = 398 m/s](https://img.qammunity.org/2020/formulas/physics/college/m9q37qwylf039odp7i5ohdmzmvoaxpouom.png)