Answer:
![v(t)=2.7*e^(0.5kt)\\\\ v(s)=(k)/(2)*s+2.7-1.3k\\\\](https://img.qammunity.org/2020/formulas/physics/college/coaseheqrqhou572f28jgpp7ngssnmbhcm.png)
For t=2.7s and k=0.3 m/s:
![v(2.7s)=1.80m/s](https://img.qammunity.org/2020/formulas/physics/college/drxwc9aw44kffhror7dy3hu51eix219y5w.png)
For s=6m and k=0.3 m/s:
![v(6m)=6.69m/s\\\\](https://img.qammunity.org/2020/formulas/physics/college/bw2jrzgmcca67f9mah0av18szneer1itnx.png)
Step-by-step explanation:
Definition of acceleration:
![a=(dv)/(dt) =0.5kv](https://img.qammunity.org/2020/formulas/physics/college/157wcc324rv50vomc1yboa4q4z4mbgbqgr.png)
we integrate in order to find v(t):
![(dv)/(v) =-0.5kdt](https://img.qammunity.org/2020/formulas/physics/college/kl3dbkesk8cfb258eb38ltywyaaazf6cx5.png)
![\int\limits^v_0 { (dv)/(v)} \, =-0.5k\int\limits^t_0 {dt} \,](https://img.qammunity.org/2020/formulas/physics/college/7nirvegnw79qwnibhr2fzul328iek2dmt6.png)
A=constant
Definition of velocity:
![v=(ds)/(dt) =A*e^(-0.5kt)](https://img.qammunity.org/2020/formulas/physics/college/kldmjcbnbgw7mfoj5kp1pa7gkbngdg7dt2.png)
We integrate:
B=constant
But:
⇒
![s= -(2/k)*v+B](https://img.qammunity.org/2020/formulas/physics/college/djmd33oqbukunltvty515nec6fcmzmhhbc.png)
D=other constant
Initial conditions:t = 0 are s0 = 2.6 m and v0 = 2.7 m/sec:
![v(t)=A*e^(-0.5kt)\\ 2.7=Ae^(-0.5k*0)\\ 2.7=A\\](https://img.qammunity.org/2020/formulas/physics/college/8xvrekavmony3v5rbiwo0pc2nnq822skxo.png)
![v(s)=D-(k)/(2)*s\\2.7=D-(k)/(2)*2.6\\D=2.7+1.3k](https://img.qammunity.org/2020/formulas/physics/college/u18npiqb9p0ffitrju57znr02jdis4l23w.png)
So:
![v(t)=2.7*e^(-0.5kt)\\\\ v(s)=(k)/(2)*s+2.7+1.3k\\\\](https://img.qammunity.org/2020/formulas/physics/college/68esxh45frdqkncrzf49o5wbtbwxq5h5g3.png)
For t=2.7s and k=0.3 m/s:
![v(2.7s)=2.7*e^(-0.5*0.3*2.7)=1.80m/s](https://img.qammunity.org/2020/formulas/physics/college/rjl1sn8lrjp40wpgwocljgd4i1q4hf1uc9.png)
For s=6m and k=0.3 m/s:
![v(6m)=(0.3)/(2)*6+2.7+1.3*0.3=6.69m/s\\\\](https://img.qammunity.org/2020/formulas/physics/college/mbp6dy6di4kpt1ql6m3b8qpm60thk1t4hd.png)