Answer:
The plane needs 1,56 seconds to clear the intersection.
Step-by-step explanation:
This is a case of uniformly accelerated rectilinear motion.
![V_0^(2) = V_f^(2) - 2ad](https://img.qammunity.org/2020/formulas/physics/high-school/k7chh3hiqzpsu7daifi9ngiyisy0y6fv0y.png)
![V_0=\sqrt{V_0^(2) } = ?](https://img.qammunity.org/2020/formulas/physics/high-school/frc4ifwlcx95cwke7i2m4xsav1z10gcvj5.png)
Vf=50 m/s
![V_f^(2) = (50 m/s)^(2) = 2500 m^(2)/s^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/tezhcrisk0ayq2l2h0vn1uvznxaddwhvon.png)
a = -5.4
(Negative because is decelerating)
d = displacement needed to clear the intersection. It should be the width of the intersection plus the lenght of the plane.
d= 59,7m + 25 m = 84.7 m
Calculating
:
![V_0^(2) = V_f^(2) - 2ad](https://img.qammunity.org/2020/formulas/physics/high-school/k7chh3hiqzpsu7daifi9ngiyisy0y6fv0y.png)
![V_0^(2)= 2500 (m^(2) )/(s^(2) ) - 2(-5.4(m)/(s^(2) ))(84.7 m)](https://img.qammunity.org/2020/formulas/physics/high-school/gjgo91zya9xc4zz8xliuvwq94m75p4b52n.png)
![V_0^(2)= 3,414.76 (m^(2) )/(s^(2) )](https://img.qammunity.org/2020/formulas/physics/high-school/518sna34nb51c0ysfa1b1k8s9lhspb4ws8.png)
![V_0= √(3,414.76) = 58.44 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/kwrjho1cknyojskczl254gs31ydv2utn61.png)
Otherwise:
![t = (V_f-V_0)/(a) =(50(m)/(s) - 58.44(m)/(s) )/(-5.4 (m)/(s^(2) ) ) = 1.56 s](https://img.qammunity.org/2020/formulas/physics/high-school/23fk2ze5g1b9yt8anik4a9kir99pfvh619.png)