Answer:
N
Step-by-step explanation:
We are given that three charged particle are placed at each corner of equilateral triangle.
![q_1=-8.2 nC,q_2=-16.4 nC,q_3=8.0nC](https://img.qammunity.org/2020/formulas/physics/high-school/oh6f3gd2ax9jy0rmmv9ngi62910lzxp2mu.png)
![q_1=-8.2* 10^(-9) C](https://img.qammunity.org/2020/formulas/physics/high-school/xszh0hfq96wcl5q1fc8t1c0jzfk1thtqwk.png)
![q_2=-16.4* 10^(-9) C](https://img.qammunity.org/2020/formulas/physics/high-school/vizbrjmjjfoze1bsrw92o75qtpo3ozkhlc.png)
![q_3=8.0* 10^(-9) C](https://img.qammunity.org/2020/formulas/physics/high-school/vaeyrlwb8vfp3j4ul5t5f4ornfwr5evts5.png)
Side of equilateral triangle =3.3 cm=
![(3.3)/(100)=0.033m](https://img.qammunity.org/2020/formulas/physics/high-school/ae8yfa8xu4fbbscioiqpnkzpdjffkytg45.png)
We know that each angle of equilateral angle=
![60^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xg2d42mzfp8ybic4tsigkuictlj4hc87zx.png)
Net force=F =
![\sum(kQq )/(d^2)](https://img.qammunity.org/2020/formulas/physics/high-school/ktdbb1axotrrl6l6lr5o4rt5jbu42o3psx.png)
Where k=
![9* 10^9 Nm^2/C^2](https://img.qammunity.org/2020/formulas/physics/high-school/27rcj92lt0lqlx4twuitt1iu5hb74ma0da.png)
If we bisect the angle at
then we have 30 degrees from there to either charge.
Direction of vertical force due to charge
and
![q_2](https://img.qammunity.org/2020/formulas/physics/middle-school/sow836l6xe7sxraugw8m1j6r4znuzpp5m3.png)
Therefore, force will be added
Vertical force=
![9* 10^9* q_3(q_1+q_2)(cos30)/((0.033)^2))](https://img.qammunity.org/2020/formulas/physics/high-school/xrsr4vatu06qmdq0vy8mlwi54rj7kznx9p.png)
Vertical net force=
![9* 10^9* 8* 10^(-9)(-8.2-16.4)* 10^(-9)* 10^6*(\sqrt3)/(2* 1089)](https://img.qammunity.org/2020/formulas/physics/high-school/zkq26fq4sr3qx9hlnku5xkt34txoxgc9t1.png)
Vertical force =
![9* 8(-24.6)* 10^(-9)* 10^6* 1.732* (1)/(2178)](https://img.qammunity.org/2020/formulas/physics/high-school/k6t6a7y1o5mz7kjgmjtair22vxjzguxeve.png)
Vertical force=
(towards
![q_1}](https://img.qammunity.org/2020/formulas/physics/high-school/t9fmzo9qmau2d85u6da9e0l71ynsm2xkst.png)
Horizontal component are opposite in direction then will b subtracted
Horizontal force=
![9* 10^9* 8* 10^(-9)(-8.2+16.4) * 10^(-9)* (sin30)/((0.033)^2)](https://img.qammunity.org/2020/formulas/physics/high-school/oh4o7hn09ax0fthvaljul6o5hocfl7ezen.png)
Horizontal force=
N(towards
![q_2](https://img.qammunity.org/2020/formulas/physics/middle-school/sow836l6xe7sxraugw8m1j6r4znuzpp5m3.png)
Net electric force acting on particle 3 due to particle =
![√(F^2_x+F^2_y)](https://img.qammunity.org/2020/formulas/physics/high-school/w94s4y4dd6qqa1qvhbewctptemvdvds36e.png)
Net force=
![\sqrt{(-1.41* 10^(-3))^2+(0.27* 10^(-3))^2}](https://img.qammunity.org/2020/formulas/physics/high-school/itaaoqngck2tvfjkhbclxrh4euhdgyx6ib.png)
Net force=
N