Answer:
a)
![R_(A+B+C) =\sqrt{(30.3603)^(2)+(-23.2963)^(2) } =38.2683 m](https://img.qammunity.org/2020/formulas/physics/high-school/l5ip73dv5rhsnwkwzed1ehrvq64yhtqjcz.png)
b) Θ=
º
c)
![R_(A-B+C) =\sqrt{(126.953)^(2)+(2.5856)^(2) } =126.97 m](https://img.qammunity.org/2020/formulas/physics/high-school/frw1x8ckx9ld2y59yr1h498k2b8zp17z63.png)
d) β=
º
e)
![D=\sqrt{(-5)^(2) +(12.059)^(2) } =13.0545m](https://img.qammunity.org/2020/formulas/physics/high-school/j836h759enime2pm3nvep0fpd3q1c49hk2.png)
f) ∅=
º
Step-by-step explanation:
First of all, we need to establish our vectors and it's directions:
A=50 m, 30º
B=50 m, 195º
C=50 m, 315º
Now that we have the three vectors, we need to calculate the x and y components:
![A_(x) =50cos(30)=25√(3)m](https://img.qammunity.org/2020/formulas/physics/high-school/eu1tcakg8jvbzru2dyjjj2or4a5w2l47ur.png)
![A_(y) =50sin(30)=25m](https://img.qammunity.org/2020/formulas/physics/high-school/sx5ppapwiuoskdv2a59j6eitnac8u3wqdl.png)
![B_(x) =50cos(195)=-48.2963 m](https://img.qammunity.org/2020/formulas/physics/high-school/jwma1oswa53b3uzll4ndy7nckci1ag9htb.png)
![B_(y) =50sin(195)=-12.941 m](https://img.qammunity.org/2020/formulas/physics/high-school/arg12oezekfo8dwmqo9tgs7ig6kglduu9w.png)
![C_(x)=50cos(315)=25√(2)m](https://img.qammunity.org/2020/formulas/physics/high-school/s8yxsmq08ne68ki7nimzr852cxm00zmrdw.png)
![C_(y)=50sin(315)=-25√(2)m](https://img.qammunity.org/2020/formulas/physics/high-school/i3fa0urovn8wmow94v6z2k7x97dn8bs147.png)
Now, that we have the components, we can calculate the resultant's components:
![R_(x) =A_(x) +B_(x) +C_(x)=25√(3) +(-48.2963)+25√(2) =30.3603m](https://img.qammunity.org/2020/formulas/physics/high-school/hbb8cequc4ds7b56ecq5h98d8d9f9pcxdy.png)
![R_(y) =A_(y) +B_(y) +C_(y)=25 +(-12.941)+(-25√(2)) =-23.2963m](https://img.qammunity.org/2020/formulas/physics/high-school/9m68wpp5k56902qvxcqd79g6kucdapokjq.png)
To find the resultant of the vector A+B+C we need to do the following steps:
a)
![R_(A+B+C) =\sqrt{(30.3603)^(2)+(-23.2963)^(2) } =38.2683 m](https://img.qammunity.org/2020/formulas/physics/high-school/l5ip73dv5rhsnwkwzed1ehrvq64yhtqjcz.png)
To find the angle it's necessary to use
:
b) Θ=
º
To find the resultant of the vector A-B+C we need to do the following steps:
![R_(x) =A_(x) -B_(x) +C_(x)=25√(3) -(-48.2963)+25√(2) =126.953m](https://img.qammunity.org/2020/formulas/physics/high-school/mkljmu9rcisy9qx983w1zm7g02g0gbe20b.png)
![R_(y) =A_(y) -B_(y) +C_(y)=25 -(-12.941)+(-25√(2)) =2.5856m](https://img.qammunity.org/2020/formulas/physics/high-school/xavmzpj79zh78xc8c9k1euuybqt3rmklx7.png)
c)
![R_(A-B+C) =\sqrt{(126.953)^(2)+(2.5856)^(2) } =126.97 m](https://img.qammunity.org/2020/formulas/physics/high-school/frw1x8ckx9ld2y59yr1h498k2b8zp17z63.png)
To find the angle it's necessary to use
:
d) β=
º
To find D=A+B it's important to follow the following steps:
![R_(x) =A_(x) +B_(x) =25√(3) +(-48.2963)=-5m](https://img.qammunity.org/2020/formulas/physics/high-school/yaezgx2p2273dsaxth7sx8dwdcpn1rhacr.png)
![R_(y) =A_(y) +B_(y) =25 +(-12.941)=12.059m](https://img.qammunity.org/2020/formulas/physics/high-school/eac1ke26eenmlcg92exzfuan9ux2zt7m8s.png)
e)
![D=\sqrt{(-5)^(2) +(12.059)^(2) } =13.0545m](https://img.qammunity.org/2020/formulas/physics/high-school/j836h759enime2pm3nvep0fpd3q1c49hk2.png)
f) ∅=
º