Answer:
Part 1)
![g(x)=-x^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3vkeo5e50uat4cl7n9ybwgmeae6rpd8lad.png)
Part 2)
![g(x)=(x+3)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p5mbu96wt5hvb63ba66yt7qlyc9gupbakv.png)
Part 3)
![g(x)=x^(2)+7](https://img.qammunity.org/2020/formulas/mathematics/high-school/qpp7el8evsemoznicyvzydztbefizot1fj.png)
Explanation:
we have
The parent function is
![f(x)=x^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zxavzws6sog4rnms3wi82pfi6hseynnvmk.png)
This is a vertical parabola open upward with vertex at origin (0,0)
Part 1) Reflection over the x-axis
The rule of the reflection across the x=axis is equal to
(x,y) ------> (x,-y)
so
f(x) -----> g(x)
The function g(x) will be
![g(x)=-x^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3vkeo5e50uat4cl7n9ybwgmeae6rpd8lad.png)
Part 2) Horizontal shift left 3 units
The rule of the translation is
(x,y) ------> (x-3,-y)
so
f(x) -----> g(x)
The function g(x) will be
![g(x)=(x+3)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p5mbu96wt5hvb63ba66yt7qlyc9gupbakv.png)
Part 3) Vertical shift up 7 units
The rule of the translation is
(x,y) ------> (x,y+7)
so
f(x) -----> g(x)
The function g(x) will be
![g(x)=x^(2)+7](https://img.qammunity.org/2020/formulas/mathematics/high-school/qpp7el8evsemoznicyvzydztbefizot1fj.png)