Answer:
![4(x+1)(x+4)=0 \text{ or } 4x^2 +20x+16=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iea0vkgd3rrpeso517fh0j64ov7qj6kgxy.png)
Explanation:
The quadratic equation can be written in two ways:
![ax^2 +bx+c=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/rawd3sd8gktuzuuh5ty1elfmf78k3s1fzf.png)
or
![a(x-x_1)(x-x_2)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xa6xbqz71h5r3rawx841oe8d4jkhl6k6mk.png)
where
is the leading coefficient and
are roots of the equation.
You are given
![a=4\\ \\x_1=-1\\ \\x_2=-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z9k1qu6bf29gfjpza7i7i9cyjr2hkqtx17.png)
Hence, it is easier to write the quadratic equation in the second form:
![4(x-(-1))(x-(-4))=0\\ \\4(x+1)(x+4)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qmuz52pny3tz7gu7lsrerxs71txnvjihpj.png)
If you myltiply all terms then the equation will be written in the first form:
![4\cdot x^2+4\cdot 4x+4\cdot x+4\cdot 1\cdot 4=0\\ \\4x^2 +20x+16=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pk8hh9qcgm0rh1678qc67p478na4mvqdds.png)