220k views
3 votes
C=(0.088)(4)kA(N-1)/N, solve for A in variable form answer

1 Answer

3 votes

Answer:


A=(1)/(k)\log_4((CN)/((N-1)(0.088)))

Explanation:

Given formula,


C=(0.088)(4)^(kA) ((N-1))/(N)----(1)

For finding the formula for A we need to isolate A in the left side,

From equation (1),


C=((0.088)(N-1))/(N)4^(kA)


(CN)/((0.088)(N-1))=4^(kA)

Taking log both sides,


\log((CN)/((0.088)(N-1)))=kA \log 4


\implies A=(\log((CN)/((0.088)(N-1))))/(log 4)


\implies A=(1)/(k)\log_4((CN)/((N-1)(0.088)))


(\because \log_bx=(\log_ax)/(\log_ab))

User GeneQ
by
5.8k points