Answer:
Explanation:
Given that a solution containing 12% alcohol is to be mixed with a solution containing 4% alcohol to make 20 gallons of solution containing 9% alcohol.
Let x gallons of 12% alcohol be mixed with y gallons of 4% alcohol.
Total gallons
![= x+y = 20](https://img.qammunity.org/2020/formulas/mathematics/college/webd2xsb1c6vhowmitlxnwm3apxpoiiwbi.png)
Alcohol content in the total mixture
![= 0.12x+0.04y =9% of x+y](https://img.qammunity.org/2020/formulas/mathematics/college/9dz6hjwy7f48li705gx46q5orr3l3jf3u8.png)
![0.12x+0.4y=0.09(20)\\12x+4y = 180](https://img.qammunity.org/2020/formulas/mathematics/college/y4mbaiaxn3dix1negjnbx9s5oh5ye021po.png)
b) Two equations are
![x+y = 20\\12x+4y = 180](https://img.qammunity.org/2020/formulas/mathematics/college/ndzld182sslxcp5m6b1bv3f9grd4l5kbog.png)
c) This is of the form Ax = B
where A =
![\left[\begin{array}{ccc}1&1\\12&4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/b2l12uhx2n5iec05782cet42fa8zpza421.png)
Inverse is
![(1)/(4-12) \left[\begin{array}{ccc}4&-1\\-12&12\end{array}\right]\\=(-1)/(8) \left[\begin{array}{ccc}4&-1\\-12&12\end{array}\right]\\](https://img.qammunity.org/2020/formulas/mathematics/college/gsm07y4hs4i45zndqjyay7kd97x5qrbvtx.png)
Solution set is A inverse *B
=
![x \ 12.5\\y \ 7.5](https://img.qammunity.org/2020/formulas/mathematics/college/o2o9hnxudxi44mpqln82sm1frruuuaum32.png)