Answer: $7.70
Explanation:
Given : A box contains eighteen $1 bills, ten $5 bills, eight $10 bills, three $20 bills, and one $100 bill.
Total bills =
![18+10+8+3+1=40](https://img.qammunity.org/2020/formulas/mathematics/college/xmq7gf4l2ps024pg3gfomtpnu24u6uotd9.png)
We know that probability of any event =
![\frac{\text{Favorable outcomes}}{\text{Total outcomes}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/37t81j8aj3gtoufgcplmtk13i6n660kd1s.png)
i.e. the probability of getting $1 bills =
![P(E_1)=(18)/(40)=0.45](https://img.qammunity.org/2020/formulas/mathematics/college/kbny2y69p88jnwze4xgydxx9u23zyly66z.png)
Probability of getting $10 bills =
![P(E_2)=(10)/(40)=0.25](https://img.qammunity.org/2020/formulas/mathematics/college/v1alliympexng5apfo5hmn1ytij0ime8xi.png)
Probability of getting $5 bills =
![P(E_3)=(8)/(40)=0.2](https://img.qammunity.org/2020/formulas/mathematics/college/855hv63qqc40r470xk976au9cdg3tc52a9.png)
Probability of getting $20 bills =
![P(E_4)=(3)/(40)=0.075](https://img.qammunity.org/2020/formulas/mathematics/college/lg74f52ujoarhj0iwpygjn07hnxv67jh4c.png)
Probability of getting $100 bills =
![P(E_5)=(1)/(40)=0.025](https://img.qammunity.org/2020/formulas/mathematics/college/2esh6a2hmhkbfj1tnf3qgaxv0d8fv7ru0k.png)
![\text{Expected value =}1* P(E_1)+5* P(E_2)+10* P(E_3)+20* P(E_4)+100* P(E_5)\\\\=1* 0.45+5* 0.25+10*0.2+20* 0.075+100* 0.025\\\\=7.7](https://img.qammunity.org/2020/formulas/mathematics/college/20k7fxl3zbfn2qxqkublpccgr91juc1p2d.png)
Hence, the expected value of your draw= $7.70