Answer with explanation:
Given : In a random sample of 200 drivers 18 years and older drawn in 2010, 58 of the drivers said they texted while driving.
i.e.
![\hat{p}=(58)/(200)=0.29](https://img.qammunity.org/2020/formulas/mathematics/college/djh3j9r3f99fbr59o3zjpx3g8qwkloqnjr.png)
n= 200
Significance level :
![\alpha: 1-0.98=0.02](https://img.qammunity.org/2020/formulas/mathematics/college/quiny776ita8llqu4i1z2al93evhrw49g9.png)
Critical value :
![z_(\alpha/2)=2.33](https://img.qammunity.org/2020/formulas/mathematics/college/57cf9sg1nhketuvdumn3ws065pqjdm3tjj.png)
a) The confidence interval for population proportion is given by :-
![\hat{p}\ \pm\ z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\\\\=0.29\pm(2.33)\sqrt{((0.29)(1-0.29))/(200)}\\\\\approx0.29\pm0.075\\\\=(0.29-0.075,0.29+0.075)=(0.215,\ 0.365 )](https://img.qammunity.org/2020/formulas/mathematics/college/uvsse4jp74d6uump30kh8l8wyikawqbcx6.png)
Hence, a 98% confidence interval to estimate the actual proportion has a lower limit of 0.215 and an upper limit of 0.365.
b). The margin of error for this sample :
![E=z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/wlyp2jtkhbgwc5j7r8vhkz7swzvxcfjj0u.png)
i.e.
![(2.33)\sqrt{((0.29)(1-0.29))/(200)}=0.0747599662252\approx0.075](https://img.qammunity.org/2020/formulas/mathematics/college/q0bwemj77f7w3udsy6cau7m5utdpor78dy.png)
Hence, the margin of error for this sample is 0.075.