11.4k views
3 votes
Consider a function f(x) = x^3*e^-2x defined for 0. Find the maximal value of this function and validate your solution using differentiation techniques.

1 Answer

2 votes

Answer:

The maximum value of the function is 0.168 at x=1.5.

Explanation:

The given function is


f(x)=x^3e^(-2x)

We need to find the maximal value of this function.

Differentiate the given function with respect to x.


f'(x)=(d)/(dx)x^3e^(-2x)

Product rule of differentiation:


(d)/(dx)(fg)=fg'+f'g

Using product rule, we get


f'(x)=x^3(d)/(dx)e^(-2x)+e^(-2x)(d)/(dx)x^3


f'(x)=x^3e^(-2x)(-2)+e^(-2x)(3x^2)


f'(x)=x^2e^(-2x)(-2x+3) .... (1)

Equate f'(x)=0.


0=x^2e^(-2x)(-2x+3)


x^2=0\Rightarrow x=0


e^(-2x)=0\Rightarrow \text{no solution}


-2x+3=0 \Rightarrow x=1.5

The function has two critical values 0 and 1.5.

Differentiate the f'(x) with respect to x.


f''(x)=2 e^(-2 x) x (3 - 6 x + 2 x^2)

At x=0,


f''(0)=2 e^(-2 (0)) (0)(3 - 6 (0) + 2*(0)^2)=0

Since f''(0)=0, therefore x=0 is the point of inflection.

At x=1.5,


f''(1.5)=2 e^(-2 (1.5)) (1.5)(3 - 6 (1.5) + 2*(1.5)^2)\approx-0.224

Since f''(1.5)<0, therefore the function is maximum at x=1.5.

Substitute x=1.5 in the given equation.


f(1.5)=(1.5)^3e^(-2(1.5))


f(1.5)\approx 0.168

Therefore the maximum value of the function is 0.168 at x=1.5.

User Brunno
by
5.2k points