103k views
4 votes
Show that the function: y f(x) = 4e3* -3e is a solution to the differential equation: y"-2y'-3y 0

1 Answer

2 votes

Answer: The verification is done below.

Step-by-step explanation: We are given to show that the function
f(x)=4e^(3x)-3e^(-x) is a solution
to the following differential equation :


y^(\prime\prime)-y^(\prime)-3y=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)

If y = f(x), then we see that


y^\prime=(d)/(dx)f(x)=(d)/(dx)(4e^(3x)-3e^(-x))=12e^(3x)+3e^(-x),\\\\\\y^(\prime\prime)=(d)/(dx)(12e^(3x)+3e^(-x))=36e^(3x)-3e^(-x).

Therefore, we get


L.H.S.\\\\\\=y^(\prime\prime)-2y^(\prime)-3y\\\\\\=(36e^(3x)-3e^(-x))-2(12e^(3x)+3e^(-x))-3(4e^(3x)-3e^(-x))\\\\\\=36e^(3x)-3e^(-x)-24e^(3x)+6e^(-x)-12e^(3x)+9e^(-x)\\\\=0\\\\=R.H.S.

Thus, the function
f(x)=4e^(3x)-3e^(-x) is a solution to the given differential equation.

Hence showed.

User PicoutputCls
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories