Answer: (B) 32
Explanation:
Given expression :
![125^(14)48^(8)](https://img.qammunity.org/2020/formulas/mathematics/college/w9gqh2ngxr2nqcmuudoclgszphhsl7u84z.png)
Since,
and
![48=16*3=(2)^4*3](https://img.qammunity.org/2020/formulas/mathematics/college/gernc7zw6js4qtohkal3e2m96agbtg0y5r.png)
Now, the given expression can be written as :
![(5^3)^(14)((2)^4*3)^(8)](https://img.qammunity.org/2020/formulas/mathematics/college/i5x76g0xiv3807y5na3tqa8sgm5qist8nh.png)
Since,
![(a^n)^m=a^(nm)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vgr02wic95ykq4r9lxf2dv6m0ygkvry9dp.png)
Then,
![(5^3)^(14)((2)^4*3)^(8)=5^(3*14)(2^(4*8)*3^8)\\\\=5^(42)*2^(32)*3^8](https://img.qammunity.org/2020/formulas/mathematics/college/a6i1f3ewvqmc0ickow80e6tus8azosbxto.png)
Since, 10 is divisible by 5 and 2 but not 3.
The greatest common number of values of 5 and 2 = 32
Then, the number of consecutive zeros would that integer have immediately to the left of its decimal point =32