Answer:
a) 0 A
b)9.6 A
c)4.38 A
Step-by-step explanation:
Given that
![I_(r.m.s)=3.1\ A](https://img.qammunity.org/2020/formulas/physics/college/m9y03rb3g20al2rec1ifgeo3kvqdm41rls.png)
![V_(r.m.s)=60\ V](https://img.qammunity.org/2020/formulas/physics/college/bhgw2bman7b2wppjr7np20fx5bqumg32cj.png)
We know that
![I_(r.m.s)=\sqrt{\int_(0)^(T)(1)/(T)I^2(t)\ dt}](https://img.qammunity.org/2020/formulas/physics/college/v60rhs8ebjm2d3hjkr6zcgzucfs59lkp8f.png)
Lets take current in sinusoidal from ,so the average values of sinusoidal function will be zero.
So the average current = 0 A
![{\int_(0)^(T)(1)/(T)I^2(t)\ dt}\ is\ the\ average\ of\ the\ square\ of\ the\ current.](https://img.qammunity.org/2020/formulas/physics/college/wy8cckeb6kfysyskgb7r2lsj27l174bbf2.png)
Average of the square of the current
![Average\ of\ the\ square\ of\ the\ current\ = I_(r.m.s)^2](https://img.qammunity.org/2020/formulas/physics/college/v8mrzcshdgjp5tyzqjbg3yv74u9nc7sqi4.png)
Average of the square of the current = 9.6 A
The amplitude of current
![I_o=\sqrt 2\ I_(r.m.s)](https://img.qammunity.org/2020/formulas/physics/college/y06ts53vdwgx57nz4otrvp3ki6j1ibw6kr.png)
So now by putting the values
![I_o=\sqrt 2\ * 3.1\ A](https://img.qammunity.org/2020/formulas/physics/college/j5gtseqhu3wshpvu05ke9li78jjotzt9ku.png)
![I_o=4.38\ A](https://img.qammunity.org/2020/formulas/physics/college/3388r8g1u8otivdjj1ocl6w8eawod27r3e.png)