Answer:
4.63 p.m.
Step-by-step explanation:
The problem given here can be solved by the Compton effect which is expressed as
![\lambda^(')-\lambda=(h)/(m_e c)(1-cos\theta)](https://img.qammunity.org/2020/formulas/physics/college/ma8mvck699e97oimwt5tc54wmxqp3srfgn.png)
here,
is the initial photon wavelength,
is the scattered photon wavelength, h is he Planck's constant,
is the free electron mass, c is the velocity of light,
is the angle of scattering.
Given that, the scattering angle is,
![\theta=157^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/l2xpv0oro7vh9mgftc3wyic48aqn1mr5h3.png)
Putting the respective values, we get
![\lambda^(')-\lambda=(6.626* 10^(-34) )/(9.11* 10^(-31)* 3* 10^(8) ) (1-cos157^\circ ) m\\\lambda^(')-\lambda=2.42* 10^(-12) (1-cos157^\circ ) m\\\lambda^(')-\lambda=2.42(1-cos157^\circ ) p.m.](https://img.qammunity.org/2020/formulas/physics/college/jk2xrql4ga6gg3bo6a914coxhld3c1xnnx.png)
Therfore,
![\lambda^(')-\lambda=4.64 p.m.](https://img.qammunity.org/2020/formulas/physics/college/rqx1wbajtle3dy6hm1j34gsnrwphvf22a8.png)
Here, the photon's incident wavelength is
![\lamda=7.33pm](https://img.qammunity.org/2020/formulas/physics/college/yz3na3auwsh6grecegdpwezu7iw28qft57.png)
So,
![\lambda^(')=7.33+4.64=11.97 p.m](https://img.qammunity.org/2020/formulas/physics/college/whjppaiaz96yenxzq80g3yzrkfaaly4ily.png)
From the conservation of momentum,
![\vec{P_\lambda}=\vec{P_(\lambda^('))}+\vec{P_e}](https://img.qammunity.org/2020/formulas/physics/college/vcbmj0260v7uc2wrwtfq82gwyki75a6owa.png)
here,
is the initial photon momentum,
is the final photon momentum and
is the scattered electron momentum.
Expanding the vector sum, we get
![P^2_(e)=P^2_(\lambda)+P^2_(\lambda^('))-2P_\lambda P_(\lambda^('))cos\theta](https://img.qammunity.org/2020/formulas/physics/college/4a184l31pksh2xiszy2mw1d5wq5jnywq7p.png)
Now expressing the momentum in terms of De-Broglie wavelength
and putting it in the above equation we get,
![\lambda_(e)=\frac{\lambda \lambda^(')}{\sqrt{\lambda^(2)+\lambda^(2)_(')-2\lambda \lambda^(') cos\theta}}](https://img.qammunity.org/2020/formulas/physics/college/7mo963ppej1nwx7f72ndpvxpjbz91mpv65.png)
Therfore,
![\lambda_(e)=\frac{7.33* 11.97}{\sqrt{7.33^(2)+11.97^(2)-2* 7.33* 11.97* cos157^\circ }} p.m.\\\lambda_(e)=(87.7401)/(18.935) = 4.63 p.m.](https://img.qammunity.org/2020/formulas/physics/college/jd79kiar65emxfxx5qqme78151vufhig5y.png)
This is the de Broglie wavelength of the electron after scattering.