Answer:
![I=3.75* 10^5 W/m^2](https://img.qammunity.org/2020/formulas/physics/college/ebq5ge0fjtky5udkvqlxsz7qiu27v26wbc.png)
Step-by-step explanation:
Given that
Diameter of laser beam d= 2.4 mm
Radius of laser beam r= 1.2 mm
Power P =1.7 W
We know that intensity(I) of laser beam given as follows
![I=(P)/(\pi r^2)](https://img.qammunity.org/2020/formulas/english/college/5qalqvv7q6avou0y4q5z61xot3k8s1td50.png)
Now by putting the values
![I=(P)/(\pi r^2)](https://img.qammunity.org/2020/formulas/english/college/5qalqvv7q6avou0y4q5z61xot3k8s1td50.png)
![I=(1.7)/(\pi * 0.0012^2)](https://img.qammunity.org/2020/formulas/physics/college/qfj9nztuowoehgdco9mr80uoha2b5zt40n.png)
So
![I=3.75* 10^5 W/m^2](https://img.qammunity.org/2020/formulas/physics/college/ebq5ge0fjtky5udkvqlxsz7qiu27v26wbc.png)
So the intensity at 1.76 m away from laser
![I=3.75* 10^5 W/m^2](https://img.qammunity.org/2020/formulas/physics/college/ebq5ge0fjtky5udkvqlxsz7qiu27v26wbc.png)