Answer:
Molar solubility of [Pb]^{2+}][Br^-]^2[/tex] =
![4.67* 10^(-4)\ M](https://img.qammunity.org/2020/formulas/chemistry/college/1esy7bhdy2xcket35iwtswd9i36s799gwz.png)
Step-by-step explanation:
![PbBr_2 \leftrightharpoons Pb^(2+) + 2Br^-](https://img.qammunity.org/2020/formulas/chemistry/college/e2mt5j8p7xfe3nbs22izuk6crft00w2y3f.png)
![Ksp = 4.76 * 10^(-6)](https://img.qammunity.org/2020/formulas/chemistry/college/7n8jk9m3hsiyczbwxuppltrpzzfzmfe90t.png)
Let the molar solubility of
be x
![PbBr_2 \leftrightharpoons Pb^(2+) + 2Br^-](https://img.qammunity.org/2020/formulas/chemistry/college/e2mt5j8p7xfe3nbs22izuk6crft00w2y3f.png)
At equi. x 2x
= x
= 2x
In the presence of 0.10 M NaBr
= 2x + 0.10
![Ksp = [Pb]^(2+)][Br^-]^2](https://img.qammunity.org/2020/formulas/chemistry/college/8s3y896kfvjntyoh7szgn963pg56u8q2uc.png)
![4.67 * 10^(-6) = x * (2x + 0.10)^2](https://img.qammunity.org/2020/formulas/chemistry/college/1jvsgq8v52zyp9iey3ytztar8v9a1bzez1.png)
As
is weakly soluble, so 2x<<0.1.
2x can be neglected as compared to 0.1
![4.67 * 10^(-6) = x * (0.10)^2](https://img.qammunity.org/2020/formulas/chemistry/college/niclhel6csc0wf8llhhw57e1ix030rigui.png)
![x=(4.67 * 10^(-6))/((0.10)^2) = 4.67* 10^(-4)\ M](https://img.qammunity.org/2020/formulas/chemistry/college/d6dmxe2mn73vkhwsr11suvgtrb03q472dx.png)