Answer:
The beam of light is moving at the peed of:
km/min
Given:
Distance from the isalnd, d = 3 km
No. of revolutions per minute, n = 4
Solution:
Angular velocity,
(1)
Now, in the right angle in the given fig.:
![tan\theta' = (y)/(3)](https://img.qammunity.org/2020/formulas/physics/high-school/2zmdjyxfit02ebm7zi6z7k0vxd6xz43f6l.png)
Now, differentiating both the sides w.r.t t:
![(dtan\theta')/(dt) = (dy)/(3dt)](https://img.qammunity.org/2020/formulas/physics/high-school/pbgwiw5qr5r1q3eptlwdakys5iuqo4razm.png)
Applying chain rule:
![(dtan\theta')/(d\theta').(d\theta')/(dt) = (dy)/(3dt)](https://img.qammunity.org/2020/formulas/physics/high-school/q90cd0qke2tkgkdulamcigpjkj9pq53ojf.png)
![sec^(2)\theta'(d\theta')/(dt) = (dy)/(3dt) = (1 + tan^(2)\theta')(d\theta')/(dt)](https://img.qammunity.org/2020/formulas/physics/high-school/jhkxhodgq7vmlh4hkqn51ep7a85hbzzw55.png)
Now, using
and y = 1 in the above eqn, we get:
![(1 + ((1)/(3))^(2))(d\theta')/(dt) = (dy)/(3dt)](https://img.qammunity.org/2020/formulas/physics/high-school/6r4wctzsbk3zm88oyz3dyu12uob3amr7fy.png)
Also, using eqn (1),
![8\pi(10)/(9))\theta' = (dy)/(3dt)](https://img.qammunity.org/2020/formulas/physics/high-school/h2a3hijhc2c3f7j3z5872n17i5dpiw17lt.png)
![(dy)/(dt) = (80\pi)/(3)](https://img.qammunity.org/2020/formulas/physics/high-school/ueybce9bm7mvki03yczpjzpz8yphijbs0m.png)